VEHICLES ROADMAP

DRIVERS

- **Reduce Cost**: non-recurring cost, recurring cost, operating cost, disruption cost, disposal cost
- **Improve Energy Efficiency**: aerodynamic efficiency, weight, propulsion system efficiency, operational impact, parasitic losses
- **Protect the Environment**: climate impact, local air quality impact, noise, ground contamination, sustainability of manufacturing, materials impact
- **Meet Operational Needs & Flexibility**: performance, payload, availability, operational limitation impact
- **Enhance Passenger Experience**: passenger comfort, service quality, ticket cost
- **Improve Safety**: certification basis, tolerance to human error, verifiability, predictability, intrusion tolerance, environmental tolerance, risk of harm to staff in the manufacturing and operational environments

ENVIRONMENT

CO2 (emissions per passenger kilometre, 2000 baseline)	75% reduction by 2050
NOx (emissions per passenger kilometre, 2000 baseline)	90% reduction by 2050
Perceived noise (aircraft level based, 2000 baseline)	65% reduction by 2050
Aircraft movements emission-free when taxiing: Aircraft designed and manufactured to be recyclable	
Net zero carbon emissions for urban and sub-regional air vehicles	

COST

- **Certification cost (2000 baseline)**: 50% reduction by 2050

SAFETY

- Fewer than **one accident per ten million** commercial aircraft flights by 2050

TECHNOLOGY PRIORITIES (TRL 6)

WHOLE AIRCRAFT DESIGN AND ANALYSIS CAPABILITY

- Conceptual design for non-standard architecture e.g., high aspect ratio wings and non-conventional STOL/VTOL
- Propeller integration for multiple propellers in various configurations with augmented lift
- Modelling in-flight geometry changes e.g., folding wing tips
- Faster, more connected, streamlined flight physics/aerodynamics capability
- Noise modelling for novel architectures/propulsion and new environments
- Well-to-wake emissions modelling for all energy sources
- Digital twin modelling for full aircraft and energy source lifecycle

FUTURE SUSTAINABLE COMMERCIAL AIRCRAFT

- Development of sustainable drop-in fuels
- Hybrid electric aircraft demonstrators
- Noise management technologies
- UHBR engines
- High aspect ratio wings
- Laminar flow wings
- Single pilot operations (cargo)
- Single pilot operations (passenger)

SUSTAINABLE AIR VEHICLES FOR URBAN AND REGIONAL MARKETS

- Fuel cell aircraft demonstrators
- Noise management technologies
- Hybrid electric aircraft demonstrators
- All-electric aircraft demonstrators
- Autonomous sense-and-avoid
- Laminar flow wings
- VTOL/STOL demonstrators
- Distributed propulsion and augmented lift
- Full autonomous capability

TARGET (EIS)

<table>
<thead>
<tr>
<th>2020-2025</th>
<th>2025-2030</th>
<th>2030-2035+</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>